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CHAPTER |

INTRODUCT ION

The objective of this report was to develop optimum signal processing
techniques for discriminating between target and clutter objects in space
that have been excited by impulse-like electromagnetic waves in order to

further the relatively new field of impulse radars. The targets and clutter

S I e S ST e S A

specified for this study were to be of relatively simple geometries, and
to be fixed in space, but randomly distributed, The study is divided into
three major areas of investigation,

The first of these is a study of backscatter in which several waveform
variations for the sphere, rectangular plate and thin rod geometries were
developed in an effort to determine mathematically tractable expressions for
the scattered energy from typical geometrical shapes. This study also revealed
that by combining simple methods the composite waveshape from many objects of
various geometry may be used to approximate a complex one. This section con-
sists essentially of a definition of the tocls which are used in the bulk of
the report.

The second part of this program involved the developnient of several
optimal-like filter configurations based upon a knowledge of the characteris~
tics of the waveforms of interest. Employing the waveforms developed in the
first section of the study, each filter was studied for its enhancement of the
output-to-input signal to clutter ratio as a function of the target to clutter
size ratio. It was found for the case of a target body much larger than the
clutter that a system encompassing a double integrator followed by a matched
filter configuration produces the greatest enhancement of the power signal to

clutter ratio. The enhancement of this ratio is proportional to the fourth

1
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power of the target to clutter size ratio,

The effect of rain as & clutter medium is studied, along with this
optimal filter configuratior, in an attempt to relate the clutter study to a
realistic situation. It is ¢hown that a golf ball sized metallic sphere in
space can produce a power signal to clutter ratio of 20 dB for an impulse
radar of 1.5 degrees beam width in the midst of heavy rain (the clutter) at
a distance of 146 kilometers with proper range gating and the optimal filter
developed herein. This calculation Is based upon a large power source and an
infinite bandwidth system in order to obtain an upper limit of the optimum
filter's performance.

Finally, the geometry identification problem was investigated in the
third section. A system was postulated for determining the class of an
impinging waveform related to a geometry of arbitrary size. Several methods
for measuring closeness between functions, including correlation and area
differences were investigated, along with the need for weighting., The
decisien template concept is shown to be the best technique for waveform
identification when the impinging backscattered waveshape is awell known, non-
corrupted waveform.

The reader may obtain an overview of the study results by referring to

Chapter V.
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CHAPTER {1

PREDICTION OF IMPULSE RADAR EXCITED BACKSCATTER WAVESHAPES

A.  OPENING STATEMENT

In this section a relatively simple technique will be shown which allows
the prediction of impulse excited time waveshapes of targets in a short period
of time and with a very limited number of calculations. Of particular interest
here are the responses to a perfectly conducting unit sphere, the flat plate,
and the thin rod.

The reasons for including a study of this type in a discussion of a radar
design philosophy are rumerous. First, a simplified version of a signature
allows for an interpretation of signature formation in terms of the geometry
and physics of a given situation. Secondly, a more simplified signature
allows for parameterization of variables to include size considerations in
the interpretation of a signature. Finally, the prediction of signature
allows the estimation of signatures of targets whose experimentally deter-
mined data is not available, as well as allowing the designer to more easily
evaluate a proposed system design without resorting to long and expensive
computer aided solutions.

In the ideal situation the radar cross-section could be determined
through an investigation of the physics of the target and radar system and
a solution of the electromagnetic equations of the body with its accompanying
boundary conditions. The resulting differential equation forms can be solved
through conventional techniques such as separation of variables in a few

situations, namely those where one of the sixteen orthogonal coordinate
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systems simplifies the specification of boundary conditions. In other cases,
{ the differential equations can only be solved through some type of numerical !
approximation technique. On the other hand, the integral form can be used in

some cases to simplify the solution of these complex formulations. Spécifi-

cally, the equations' solutions would yield a complete description of the
total equivalent surface currents whick ~~.id be used to determine the so
called reflected fields at the receiving antenna.

In zzaeral, however, exact solutions are not available because most
objects of interest are much too complex to result in easily simplified
or readily solved electromagnetic equations. For this reason, the use of
predicted approximate solutions to the scatter cross~section is the most
practical and really the only available approach aside from inspecting
experimentally determined data.

There are a number of approximating techniques which are used to deter-
mine the radar cross-sections of objects which are larger in size than a
few wavelengths in dimension. One of these approaches is the technique of
seometric optics, which utilizes the laws of reflection and refraction applied
to the incident electromagnetic field treated in the form of rays to determine
the reflected field. This technique is similar to the one used with visible
light in the mirror problem in that its major shortcoming is that it treats
the radiation as particulate and thus fails to bring out the wave nature and
assocliated characteristics such as polarization, of the problem. Since the
wavelike nature of the interrogating waveform gives rise to some of the

characteristics which are important in predicting the reflected waveform,
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for example the creeping wave on the target's surface, this first approxi~
mation is unacceptable.

Another approximation is one called the physical optics approach. Here
the wavelike nature of the interrogator is included. The basic concept here
is that the local current density at each isolated point of the illuminated
portion of the target is assumed to be equal to one which would flow at that
point on an infinite sized tangent plane. The assumption here which is
invalid is that the current density in the shadow region is zero. Also in
question is an assumption that neglects the effects of possible mutual influence
between adjacent currents on the target surface,

Still another approach is one called geometrical diffraction theory. This
technique uses some of the elements of physical optics as well as geometrical
optics with its ray theory to provide the necessary considerations of wave-
length, phases, polarization, and interference as well as ray reflection to
provide the reflected waveform. The concept of scattering centers becomes
introduced through this technique and it indicates that they become localized
at or near points of geometric discontinuities.

B. THE CLASSICALLY DETERMINED SPHERE CROSS-SECTION

The sphere is one of the geometries which will beccme useful later in
the discussion, partly because of its simplicity but more importantly because
of the fact that some of the clutter models can be built in the form of
assemblies of small spheres. Another reason for looking at the sphere is
that its backscatter cross-section is well known, since it is one of a few

geometries which lend themselves to separation of variables and exact solutions.
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A large bedy of work presently exists in tha literature for consideration and

comparison for this particular geometry. The current distribution on the
surface is well known and therefore this geometry is an appropriate one for
using as a standard for approximating techniques. The sphere is unique in
that its scattering is independent of aspect angle; i.e., viewed from any
angle the response is the same.

In Figure 1 is shown the radar cross-section of a sphere, normalized
to naz, the sphere's projected area as seen by the observer. This plot is
the result of an exact solution; i.e., it was determined on the basis of a
solution of the differential equations arising from Maxwell's equations for
the surface of the sphere (see Reference 1).

There are three distinct regions in the radar cross-section %or a
perfectly conducting sphere, which vary with the circumference/wavelength
ratio. In the low-frequency region, which is called the Rayleigh region, the
radar cross~section varies as the inverse of the fourth power of the wave-
length of the incident radiation. Here the frequency is such that the
circumference is iess than one wavelength., All objects whose greatest
dimensions are smaller than the wavelength of the incident radiation will
exhibit a behavior similar to that of the Rayleigh region of the sphere.

The second region, the Mie or resonance region (1<2ma/A <10) is a region
of transition characterized by a damped oscillation about the c/1ra2 = | value.
The oscillatory behavior is thought to be due to interference between a specular
component and a component due to waves which are exponentially damped as they

“iereep'' around the shadowed portion of the sphere and circumnavigate it to be
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relaunched in the direction of the radar receiving antenna. In the high fre-
quency or optical (2ma/A>10) region, the cross-section finally setiles down to
a value of o/ﬂa2==l, which is the visual projected area of the subject sphere.
As will be shown later, the high frequency limit agrees in the determinations
of all methods - physicai optics, impulse approximation, or in the exact theory
as determined through the Maxwell equation sclution.
C. THE KENNAUGH-COSGRIFF IMPULSE RESPONSE APPROXIMATION

1. Introduction

At this point, the approach has been to indicate the results of data which
has been generated from an exact solution of the differential equations govern-
ing the current density residing on the surface of the sphere (see References 1
and 2).

Now we turn to the objective of this section of the report, the develop-
ment of an approximation to the response to an impinging delta function. The
chief value of the impulse response is that it can add insight to the relation-
ship between the target shape and radar reflectivity. The customary approach
in developing solutions to e'ectromagnetic scattering problems is to assume
a monochromatic source with a suitable constraint on the ratio of impinging
wavelength to the physical dimensions. When this ratio is small the solution
is merely a perturbation of the geometrical or physical optics solution. On
wne other hand, when the ratio is large the solution is very similar in form
to that oredicted by the Rayleigh region scattering model. Usually most
approximations vield reasonable results in the high and low frequency regions
but fail to account adequately for the cross-section in the rescnance or Mie

region,
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A solution for the impulse response to a scatterer allows a determination
of the response to any monochromatic interrogator, or for any interrogating
waveform. The approximating solution of Kennaugh and Cosgriff is chosen such
that the cross-section is matched to both the limiting case of zero and

infinite source frequency, and constraining corditions are met such that the

resonance region is fairly well determined.
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2. Linear System Analysis
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One of the concepts which will help in understanding the radar impulse
response approximation is that of a linear system. The system will be assumed
to be time invariant, i.e., the scatterer is assumed to not move, either trans-
lationally or rotationally. Input and output electric fieid intensities will
be defined for two points in space and will be signified by ei(t) and eo(t) ]
respectively. |f the direction and polarization of the incident plane wave i
are restricted, the scatter transfer function As(jw) = z:(jz is that of a one-
dimensional linear system. Further restricting the input to an impulse or
delta function 8(t) = e‘(t) will yield the impulse function output és(t).

Since ihe process is assumed to be a linear one, the output response to

an arbitrary input function ei(t) may be determined throu,n a convolution ;

of the impulse output response and the arbitrary input function: ¢

t
eo(t) -/ e‘(r) Gs(t-r) dr (1)

°
Therefore, once the impulse response has been determined, the response ;

to any arbitrary input function can be easily reached through this integral

kAL R0

transformation. It should be made clear that the transter function As(jw)

and Gs(t) are a Fourier transform pair. g
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3. Low Frequency Approximation - The Rayleigh Region

Let the system transfer function be approximated by a series in (ju)

with constants a. This series can be written:
. 2
As(jm) =a + al(Jw) + az(jm) + eee (2)

For the low frequency estimate to As(jw), the Rayleigh law of scattering
postulates that the first two constants are zero and the third proportional
to the volume of the scatterer. This results in the following moment conditions

on Gs(t) (see Reference 3):

XY

fss(t)dt-o !
o ﬁ
ftG(t)dt-O ;

s ;
(o]

2
.[t GS(t) dt = 2a2 ;

ft" 8 (t) dt = (-l)“n!an (3)

° ,r
The first relation is equivalent to the statement that for the impulse response
to any arbitrary shape, the DC level or average area under the time-waveshape
area is zero. The constant a, is a constant which can be determined from a
knowledge of the scattering from static electromagnetic fields and is called p

the Rayleigh coefficient. With the use of only the first three relationships
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good approximations to és(t) can be made, but in some special cases the higher
order terms can be used and are available.

L, High Frequency Approximation - The Optica! Region

A simple yet useful approximation to scattering by a body in the high
frequency region is the physical optics approximation. In this approximation,
the local current density at each point on the illuminated portion of the body
is assumed to be equal to that which would flow at the same point on an infinite
tangent plane. Specifically, it is assumed that at each point on only the
{1luminated side of the surface, the current density is equal to 2n x H, where
n is a vector normal to the surface, and H is the impinging magnetic field
intensity. On the shadowed side the surface current density is assumed to be
zero (see Reference 4).

The electric field response which has been determined to be scattered
at large distances in the source direction as a result of illumination by an
impulse has been found to be of the form

6,0 = - 42 w
dz
where z = gs-and A(z) is the silhouette area of the target &s de!ineated by
the incident wave, which is assumed to move over the surface of the target
at a velocity equal to one-half that of the free-space velocity, c.

In Figure 2, the physical optics impulse response to three geometries,
the sphere, spheroid, and off axis square plate are indicated. The impulses
in the responses of the cases of the sphere and spheroid result from the
discontinuity in the change of the rate of change of the radar cross-section
at the first point of incidence. In all three cases the response was derived

with the use of expression (3) exclusively.
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Figure 2. Impulse Response of Scatterers According to Physical Optics
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Figure 3 indicates the cross-section of the conducting sphere determined
through the physical optics approximation as displayed in Figure 2 for com-
parison with the more exact electromagnetic solution.

Note that the envelope size and shape in the high frequency region is
approximately correct, but the oscilliatory frequency is not correct. In the
Rayleigh region the physical optics approximetion is far from being repre-
sentative of the exact solution.

5. Higher Level Approximations

The approach which has been suggested in the literature for higher
level approximations is to alter the time functicn determined in the hysical
optics solution in such a manner as to yield the Rayleigh condition. This is
done by adding additional time function data to the information indicated in
Figure 2, for example, subject to the Rayleigh constraints of expression 3.
Usually only the first three moment conditions are used to form this approxi-
mation (see Rcference 4).

A number of appropriate functions can be postulated which not only are
based upon the physical optics soiution but also satisfy the Rayleigh condition.
The simplest extension or correction to the spherical impulse response

approximation is the step correction indicated in Figure 4. An investigation
of the physical optics solution indicates that it meets the constraint imposed
by the first Rayleigh moment condition, i.e., its DC or average value is indeed
always zzro. Thus, the constraint which must be met by the corrector is that
its components have a zero DC level, and that the total waveform satisfy the

additional moment conditions specified in expression 3.

13
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Figure 3. Back-scattering From a Conducting Sphere
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Figure 5 shows the radar cross-section which results from this approxi-
mation. It can be seen here that both the high frequency and particularly
the Rayleigh region are reasonably well approximated by this waveshape. The
behavior in the resonance region is not particularly well defined, however.

Another method for correction can be studied by applying a polynomial
form instead of the step which, like the step correction starts at the final
value of the physical optics time response. Again, the moment equations are
met by choosing the polynomial coefficients appropriately. Indicated in
Figure 6 are th‘ polynomiai corrections to the physical optics solutions for
the sphere and sbheroid.

In Figure 7 the cross-section for the polynomial correction to the
impulse spherical response is shown to be reasonably good except for a shift
in the resonant region. In the low and high frequency regions, the approxi-
mation is quite good.

Kennaugh and Moffatt indicate a more complex solution to the spherical
impulse scattering problem, which is indicated in Figure 8. This approach
is based upon experimental data and a model which uses a finite number of
harmonically related plane waves which are superimposed to produce a com-
posite backscatter 6S(t). In the figure, tabulated values of the back-
scatter waveform at given values corresponding to a sphere radius to wave-
length ratio of 0.04 to 19.0 in steps of 0.04 were used in a calculation
including 475 harmonics. In addition, the step and ramp responses to the
unit conducting sphere are included for comparison. These waveforms will be
used in the further development of our simplified backscatter models to act

as standards (see Reference 5).
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Figure 6. Polynomial Correction to Approximation for Impulse Response
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(Kennaugh and Moffatt, Ref. 5)
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6. Mathematically Tenable Mode! for the Sphere

Based upon the models and work presented thus far, a model for the
impulse excited spherical backscatter waveform which is mathematically simpler
is desired. Specifically, a response waveform is cesired which takes on a form
which is easily written either in the time or frequency domain. Still con-
straining this model waveform however, are the Rayleigh condition and the
high frequency region response, the latter of which is satisfied by the
physical optics approach.
(a) The response postulated in Figure 9 serves as a trial waveform
for this approach. This waveform was postulated because its
shape approximates that of the more rigorous solution indicated
in Figure 8. It was also postulated because it can be relatively
easily described mathematically.
By forcing the values of K and t with respect to T the first
Rayleigh condition can be met. Note that the area of the triangle
can be made equal to that of the impulse, as well. The equation
which describes thls impulse response in the frequency domain is
b Uu) = § - 77 [l-e‘f'“] + a2 [‘- e'j""]ze'j'”T (5)
To check for adherence to the Rayleigh moment condition, the
limit of As(jw) can be taken as w approaches zero. That is, only

the wz and higher terms must exist as w goes to zero. Then,

o) = [kg]+ 3o [T - k)] + uw)z[%z- Tt eep] @

limw+ o
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Sphere Backscatter Trial Response |
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(b)

(c)
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In order to meet the conditions of equations 2 and 3, the first

term will disappear if K takes on a value of 1/2, but for any finite
pulse width t the second term cannot be forced to be equal to zero.
Hence, this functional form cannot satisfy the Rayleigh condition.

Another form of the backscatter response which can be postulated is

that indicated in Figure 10. This response is suggested as an extension

of the effort in Section a, since it is the result of letting T = 0.

With this assumption the second term in expression 6 will equal zero,
and the three Rayleigh moment conditions will be met.

Letting the value of t in expression 5 go to zero, the equation which
describes the waveform of Figure 10 is given by an expression in the

frequency domain winich can be written as

- L “juTy _ 1L L. =juT

sgti) = g1+ < 8T] - i [1 - ] )
Another proposed waveshape for mathematical simplification of the
backscatter waveshape is indicated in Figure 11.

Expressed in the frequency domain, the expression for this waveshape

takes the form:

pjo) = % - T:TT‘[' - s'J“T] ' g [1 - e'j“"] e~JuT (8)

Again checking for the Rayleigh conditions by taking the .limit,

2

2
AGo) = 3 (k-1 + Jo [T 00 - 5]+ G0?[F + S-e ke (34 )] @
1im0
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The first term can be forced to zero by letting K = 1, however, the
second term can also be made to go to zero then only if t = 0. But
this is identically the case presented in part (b), since the right
positive rectangular pulse becomes an impulse in the limit as t goes
to zero.

These proposals all indicate that the best approximate waveform
which not only satisfies the Rayleigh and physical optics conditions
but is in addition mathematically simple is the one presented in
part (b).

7. Approximate Sphere Impulse Response - Model A

Still necessary to complete the model developed in part 6, equations 7 and
Figure 10 is the development of its constants, which includes the scattering as
a function of the sphere's dimension and the distance r to the observation point.
Consider first its normalized response. Figure 2 suggests, by comparison
with Figure 10, that the value of T should be d/c (Notice that the impulse and ;
rectangular response areas would then be the same for each except that the impulse
area is shared between two impulses in Figure 10. Recall that the second impulse
was required to satisfy the Rayleigh condition which Figure 2 does not.) This
value of T, however, is not consistent with wide band scattering as can be
observed from Figure 8a and a consideration of the physical process. The time
to a second peak can be seen from Figure 8a to occur near 2.5 d/¢ rather than
d/c. This can be verified from the physics by considering the creeping wave
contribution. This contribution occurs at the time it takes the exciting wave
to sweep the sphere's diameter d to excite the sphere's backside at d, and then

travel around the circumference back to the sphere's front side. The total

26




delay from the inception of the excitation is then d/c (1 + w/2) or

2.57 d/c.

Figure 10 may then be modified as shown in Figure 12 by increasing the

time by 2.5T and reducing the amplitude proportionally in order to maintain

equal areas. The entire function was then multiplied by T in order to preserve

its un-normalized response.

The multiplier for the waveform of Figure 12, which allows a complete

mathematical description of the sphere's impulse response, can be obtained by

investigating the sphere's radar cross-section expression. The radar cross-

section is defined as:
G = ,mrz :O(jw)lz
jw)
i
or, :o(}:; .[;g__] 1/2
i L?

‘NI’Z

(10)

(1)

At optical frequencies the sphere's cross-section is of the formo = naz.

(See Figure 1) Then, substituting this value of o into expression 11 gives

1/2
.E.o(jw) .r “az =2, (.2_“. >> ])
Ei (jwy L“ 1”’2 2r ? A

This can be written in terms of the diameter since d = 2a or

Eo(jw) - d  (2ma 5s l)
e o &

27
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Figure 12. Normalized Sphere Impulse Response (Simplified Form)
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Expression 13 is to be equated to the expression describing the approximate

sphere's waveshape (equation 7) at optical frequencies. To make expression 7
apply to Figure 12, T must be multiplied by 2.5 for the creeping wave effect.
Also the entire function must be multiplied by KT to un-normalize it. It is
the multiplier to be identified to complete the function.

Performing these operations on expression 7 and allo&ing 2ra/) >>1,

the approximate frequency response magnitude at optical frequencies is
2na
la ()| = [KT cos (1,25 wT)| ; (32 >> 1) (14)

Notice that rather than the response being constant as shown in Figure 1, it
has zeros at (2n-1)n/2 intervals. This condition arises due to the addition
of the second impulse. Had it been a more dispersed function, this would not
‘occur. Fortunately, it will be shown later that these zeros do not alter the
value of the model. This will be proven by comparing the results with both
experimental and detailed theoretical data.

Now equating expressions 13 and 14, the multiplying factor K takes on the
value c/br. The full expression for the impulse response of a sphere of

diameter d can then be written as

GS(t) - ﬁ'r' [-g.a.&(t) + g-ga(t-z.s -:-:-) s :
-2—'3 u(t). + i'LET u(t-z.s' %)] E

Fiqure 13 shows this response.
The experimental verification of this model will be discussed in the

paragraphs to follow.
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Figure 13. Absolute Sphere's Impulse Response
(Simplified Form) Mode! A
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8. Experimental Verification of Simplified Model

Sperry Rand, under contract to RADC (see Reference 6), performed scatter-

L3

ing experiments from many objects one of which was a sphere. Figure 14 shows
the measured incident excitation pulse identified as input pulse, and the
scattered response identified as the measured response. Superimposed upon

the measured response is the response one can obtain using the normalized model
of Figure 13. The response was constructed by convolving the impulse model
with the input pulse. This amounted to summing the contributions of two input
pulses displaced by the time interval 5 a/c plus thg integration of the pulse
over that interval.

Notice that the waveshapes over the first alternation are identical after
which a variation does occur. |[f one were to average this measured response's
undershoot over the interval, its value would approximate that produced by the
model. The same applies to the second pulse's area as cumpared to the model's.
Considering the simplicity of the model this comparison is not bad.

Since much of signal! processing encompasses correlation, a measure of the
model's performance may be obtained by correlating the model's and the measured
responses and comparing their results. The autocorrelation of a function is

defined as

.
M= [ (0 ¢ () o (16)

or *© o,
¢y (1= 0) -f F5(e) at

bad-

and it has a maximum value at t = 0.
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Figures 15 and 16 show the model and measured responses squared (fl(t)z), and

their yhtegrated values that correspond to 0‘1(0). The maximum autocorrelation

valuif are 981.2 units for the model and 872 units for the measured, or an

RSN e e ﬂﬁw& ‘ir"‘

inc;éase of twelve percent over the measured value. This is indeed an

jﬁé;ptable deviation.

’ Next to be considered is the response that this model will provide for a

’

o iagS

step or a ramp excitation for purposes of comparing with the detailed theore-
tical models of Kennaugh and Moffatt.

9. Approximate Models For Step and Ramp Response

At this point a number of methods for describing the impulse response
of a conducting sphere have been investigated. It is of interest to further
evaluate the waveform of Figure 13 by looking at its response to the step and
puise forms of excitation.

Recall from the earlier discussion that the output response to an arbitrary .
function may be determined through a convolution of the impulse output response
and the arbitrary input function (see expression 1). However, if the excitation
is a step function, then the scattered response is the integral of the impulse ‘
response. For a ramp excitation, the response is the integral of the step ;
response. :

a. Step Response

The step response to the approximate sphere impulse function of Figure :
13 is obtained by integrating expression 15, It is listed in expression 17
and sketched in Figure 17.
c [T T }
us(t) = FF[’E u(t) + -z-u(t-Z.ST) “ggoul) ¢

| (17)
t u(t-2,5T) (t~2.5T)]
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Figure 17. Normalized Step Response of a Sphere (Simplified Form)
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This figure can be compared to Kennaugh and Moffatt's high accuracy curves of
Figure 8a. The shape is approximately the same with the highest degree of

accuracy occurring over the first positive interval. Notice that the cross-

over time of 1.25T is the same in both. The deviations in the model essen-
tially occur in the under-swing area. Although the shapes are similar, the
model has a higher amplitude and is less broad than shown i Figure 8a. There
also occurs a small positive alternation beyond 3T. Overall, the times that

the peaks and crossovers occur do compare favorably making this simple model

i
:
!
{
'
¥
!
i
¢
i

attractive.

b. Ramp Response

The ramp scattering response of a sphere may be obtained by integrating

expression 17. The result is

t
_O/ ug(t) dt = {';-;[-;- u(t) ¢t + % u(t-2.57) (t-2.5T)
(18)
- ;—u(t) 2+ %— u(t-2.5T) (t'z.s'r)z]

Figure 18 shows the ramp scattered response.

Comparing this curve with that shown in Figure 8a produced by Kennaugh
and Moffatt again the similarity is attractive, not only in shape but in
crossover times. The portion where a small error occurs is in the undershoot.

It has been shown by these computations and comparisons with more detailed
models and experimental data, that the simple model of Figure 13 is represen- ‘ 1
tative of impulse back scattering from a metallic sphere., This model will be ' q
used in the study for those cases where quick sketching results are of interest

in order to obtain an insight into the problems under investigation.
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Figure 18. Normalized Ramp Response of a Sphere (Simplified Form)
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10. Approximate Sphere Responses - Model 8

Another form for the normalized sphere step response which becomes quite

AT 2w 2 Tt B € Y, S A e

valuable in hand calculations is the one displayed in Figure 19, and may be

described by expression 19 as

us(t) = %F-(%) [u(t) cos g;t + u(t-2.5T) cos = (t -2. STﬂ (19)

Notice that the feature of this model is that the number of terms to be

oy e LSS RS ¥,

handled have diminished by a factor of two over those of Model-A. (See

equation 17.) This model approximates that of Model~A and the Kennaugh and

. .3
ST R

Moffatt model of Figure 8b.
The model's simple mathematical form makes calculation of cross- ;
correlations, for example, a much more tractable matter, while preserving the
Rayleigh moment conditions. The impulse excited sphere backscatter time 3
waveshape which would give rise to a waveform of the type indicated in E
Figure 19 is shown in Figure 20. It is merely the functional derivative of
Figure 19's waveform. Expression 20 describes this waveform. This investi-
gation of the step response has, in effect, led us to yet another approxi-

mation to the impulse response of a perfectly conducting sphere.

5,(t) = F=[F o0e) + T ate-2.5m - Lue) sin 3¢
(20)
- -u(t 2.5T) sin T (t-2, sr)]

The ramp response of this model is shown in Figure 21 and described by

expression 21. As one can see, it is a single alternation of a sinusoid. 3 (|

ju(t) dt = %F' (0.397T2) [u(t) sin gt

+ u(t=2.5T) sin %%-(t-Z.ST)]

(21) 3
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Figure 19, The Cosine Approximation to the Step Response Modei B
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Flgure 21, Ramp Scattering Response of a Sphere -
Model B C
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This response compares favorably to both Figures 8c and 18.

11. Approximate Sphere Responses - Model C

During the study, an investigation will be performed on the classical
optimal filter. 1In order to perform the required factoring, the function to
be operated upon must be of a polynomial nature. An approximate model will
now be developed to meet this requirement which also follows the scattering
laws.

From past discussions, it was pointed out that at low frequencies the
Rayleigh field scattering varied as the square of the frequency of excitation.
At the very high or optical frequencies, the field scattering is a constant
for a spherical scatterer. Applying these conditions plus the fact that there
can be no average or dc value, the following transfer function is postulated.

c (T W 2
b u) = L‘F(i’) T (22}
E M 13

The time domain expression for this response is

|
AT R SR [

and it is plotted in Figure 22.

Notice that this function lacks the resonance or Mie region which accounts
for the smearing and non-peaking of the second alternation as occurs in
Figure 8a. However, the second alternation does contain the area that the

second peak would have if the Mie region were included. The undershoot
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Figure 22. Approximate Polynomial Sphere Impulse
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area and impulse amplitudes can also be shown to be identical to all of the
prior models. Certainly this model, as in all of the others, does describe
the early time sphere scattering performance quite well.

Figure 23 shows the step response of the model as generated by expression

zk. t
Jc (T LTTEsT gt
ug (t) To'r'(z)[e ( 1.251)] (24)
Nctice that the response follows the early time well as in the other cases.
The undershoot's amplitude is smeared but its area is identical to the posi-
tive portion.

Figure 24 shows the ramp response of the polynomial model as generated

by expression 25.

t ]
[us(t) dt = ﬁ-;-(%) ¢ ¢ 1-251 (25)

R s L

SRRV

Comparing the crest amplitudes of the other ramp excited models, it is

R anl

observed that the variation is not severe. The crest amplitude also occurs
as' for the other models at 1,257,

It has been shown that the polynomial model does present the salient
scattering responses from a metal sphere, especially in early time. Hence,
it will later be used in the analysis.

To this point we have developed scattering models tor the sphere only.
Since we are also interested in other geometries in order to study the descri-
mination problem, we will also investigate a flat plate and a dipole rod. We

shall begin with the flat plate.
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Figure 23. Approximate Polynomial Sphere
Step Response - Model C
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Figure 24, Approximate Polynomial Sphere
Ramp Response - Model C
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4 12. Flat Plate Scattering Model

Figure 2c shows the waveform which physical opcics considerations predict .
for a thin square plate when it is interrogated at an angle not perpendicular

to the face of the plate. The area plot A(z) indicated in the figure is

easily predicted by merely inspecting the geometry. For the special case
which will be considered in this section, the illumination and scatter of
interest will be assumed to Le perpendicular to the face of the plate. In :
this case, all of the energy will reach all points of the plate surface area ‘
at the same time. Thus, the area plot A(z) will be as indicated in Figure 2c.
Applying expression 4, one can then obtain the normalized solution shown in 1
Figure 2c. For the case of a broadside excitation, the normalized impulse

response can be found to be

22 4
Gp(t) = ;—i-o T 6(t) (26)

The dimensions of the plate have been changed from d to £ in order to avoid
any confusion later in the study when plate and sphere responses will be
compared. Expression (26) lacks the multiplying factor that includes the
effect of distance on the scattering. This is necessary so that a compari-
son can be made between the scattering amplitudes of different geometries.
Notice that the time response is a doublet,

Scattering from a thin flat surface of any geometry that is uniformly

excited can be determined from the following well known expression.

E,(Ju, 1) = gl {ai(jw. X, y) dA (27)

2rcr
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The expression assumes that the observation point r from the surface is quite
distant such that near field conditions are not of concern. This is generally
not a problem unless the excitation has a very low frequency content and the
observation point is close. Since it is assumed that the excitation is uni-
form, then the integration in (27) is only over the area, hence the equation

may be written as

E,Uw, r) e

B0 Zner A (28)

Substituting for the area A, 22 and transforming the function into the time

domain gives

. U SN
oS . T
SRR

2 9
Gp(t) = Smer 'a-t's(t) (29)
Comparing expressions (29) and (26) it is seen that the results regarding ’§~
the time waveshape are the same except that the function is now un-normalized s
and contains the distance factor r.
The solution presented applies at the very high frequencies where the

excitation wavelength is much greater than 2. We require an approximate

R R AN

solution that applies over all frequencies. An inspection of expression 28
indicates that the zero average value condition is met since the function is
zero at w = 0 but it does not satisfy the Rayleigh condition. Recall the
Rayieigh condition requires that the scattering increase as wz for excitation
wavelengths large compared to the objects' dimensions. The following func-
tion is postulated to satisfy both the Rayleigh and the optical regions with-

out emphasis on the Mie region. Experimental results obtained from an ongoing

h9




RADC program (see Rzference 7) where parabolic antennas have been excited by
fields of impulse-like nature (pulse-widths measured in tenths of nanoseconds)
have shown that the predominant scattering is derivative-like and the oscilla-

tions are quite small., This justifies the chosen mode! even over the Mle region.

2 2
£ (ju
bl = S T+ = (30)

where a = _:_c_

The factor a represents the frequency where the plate would experience
its first resonance.
Performing an inverse transform on expression (30) gives the time domain

scattered impulse response of a plate as

2
6,(t) = e [ 8l . 4 () + o? e““] (31)

This response is a doublet and an impulse at t = 0 followed by a decaying

exponential.

The step scattering response is obtained by integrating expression 31. Then

2
uy(t) = 2% [s(:) - ae'°‘] (32)

2ncr
This completes the development of a plate's impulse and step scattering
response. We shall consider next the scattering from a thin dipole-like rod.

13. Approximate Thin Rod Scattering Response

Figure 25 shows the scattering model, to be examined, where the incident
electric field E‘(jw) is polarized in the same axial directicn as the rod.
The rod has a iength 2 and a radius "a'" and it is considered, as in the other
past cases, to be in free space. The broadside sensed scattering field Eo(jw, r)

at a distance ''r'"* is to be described.
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Figure 25. Thin Rod Scattering Model
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The transfer function scattering response for this model can be shown

to be
E (jm r) tan (%&)
( ) = 2¢ £
Bylie Fﬁn'(m?[ G 145 (1 - %) tan (.«%] 53)

where Zo(w) is the rod's characteristic impedance, T(w) is a transmission-like
coefficient which accounts for the radiation from the rod's ends, and n, the
free space wave impedance. The derivation of this expression will not be shown
as it is extensive and beyond the scope of this effort. However, a verbal
description will be given regarding its development after a brief discussion
of its characteristics.

Notice that equation 33 satisfies the Rayleigh requirements. At w =0
the function is zero (T, the transmission coefficient goes to 2 since the rod's
ends appear as an open circuit), and for small w values the expression increases
as w?. The resonance or the Mie region is present as can be seen by the peaking
of the function when the argument goes to n/2. There is also an optical region

where tiie function approaches a constant value of

A (Ju) 5;2-- (34)

since the second term in the brackets approaches zero, this region presents

a radar cross section, using expressions 10 and 34 of
o= (1) 2. (35)

The value of the characteristic impedance, for impulse-like excitations, has

been demonstrated by Paul Van Etten of RADC and confirmed by BOM and IKOR
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during the performance of an RADC contract and found to be approximately
220 ohms,

Satisfying the required scattering conditions has demonstrated the
validity of the transfer function shown in expression 33.

The development of the expression was along classical lines where the
rod's surface current was determined by the excitation of a uniform wave front
and the requirement that the current go to zero at the rod's ends. Once this
current was obtained, it was then possible to determine the magnetic vector
potential on the axis of symmetry. The magnetic and electric fields followed
" from the curl and double curl, respectively, of the magnetic vector potential.

Figure 26 shows the rod's impulse response using expressicn 33, with the
assumptions that the transmission coefficient and characteristic impedance are
essentially real quantities. Had their complex values been introduced, the
corners of each alternation would be rounded and the function would tend
towards a damped sinusoid. Later in this study the sinusoidal approximation
will be used for the purpose of calculating filter responses.

This completes the development of the electromagnetic approximate scat-
tering models. We shall now turn to their application in seeking out the
best filter which enhances the signal-to-clutter ratio and provides a high

degree of target discrimination.
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CHAPTER 111

THE CLUTTER PROBLEM

sy

s,

a5

A.  INTRODUCTORY STATEMENT - DEFINITIONS %
s

In this section the subject will be clutter and clutter rejection tech- gg

i?m

niques which are generally applicable to the Time Domain Radar System. One =

S

Fas s

of the characteristics which is sometimes ascribed to clutter is that it is

composed of a large number of scatterers, each having independent motions,

s

which in turn are independent of the targets' motion. The clutter problem
may be likened in some respects to the noise problem in communications work.

In both cases a signal waveform exists in the presence of an additive com-

ponent, the presence of which it is desired to minimize as much as possible.
Our problem then is to devise an optimum transfer function which wil? output
a signal which will exhibit the highest target-to-clutter signal component

ratio.

The terms ''optimum' and the input-output concept immediately suggest

st

some type of filter strategy. The concepts of optimum filtering techniques

and clutter rejection are by no means new to radar system design. What is
new, however, is the application of this work to the time domain radar system
philosophy.

Let us consider the special needs of the time domain radar system and
the 'knowns.'! When designing a system the first question to be answered is
what is the desirable output. From the information to be presented later,
it is seen that the most important items to be preserved are waveshape and
magnitude information, and these should be kept as intact as possible in

order that the discrimination be optimum.
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A number of forms of clutter exist, dependent upon the environment and
application to which the system is being made. Ground, weather, and sea
clutter are only three of the types of interfering activities which oftimes
hamper the identification of radar returns.

In a conventional radar system one of the 'knowns' is the refiected
waveform. The conventional monochromatic pulsed radar output signal will
be reflected not only by the target, a desired response, but also by the
clutter bodies, a highly undesired response. But here the reflected wave-
form's shape can be predicted because all reflected waveforms will be of the
same frequency as that transmitted, except for phase and doppler frequency
shifting due to distance velocity differences. The key factor in conven-
tional radar design, then, is to use the doppler and phase shift information
to calculate velocity, while sifting out that information which differs from
that of the target. !n designing optimum filters, the factors necessary to
complete the design are a knowledge of the expected target and clutter wave-
forms, as will be seen later in the discussion. In a conventional radar sys-
tem the backscatter wavefurm is certainly predictable because of its relation
to the interrogating waveform, and in most cases the shap: of the clutter
waveform can be either measured or predicted. Thus, a filter which is
optimal can be designed for each type of clutter, regardless of target. This
type of filter will be called a target-fixed filter.

Let us now consider the characteristics of the time domain radar system
which constrain the use of filtering schemes. As we have noted, one of the
backscatter characteristics which marks the time domain radar system is that

the reflected waveform is a function of target geometry. This means that

56




the optimum filter is not target fixed; i.e., for each target of interest
and for each clutter waveform of interest, the optimal filter is required to
change configuration to insure optimality. This immediately suggests a
sequential scheme for inspecting an unknown waveform for adherence to an
expecter waveshape. The filter required here will be known as a target
variable type of filter.

A characteristic of clutter which has been overlooked in the discussion
above is that in many cases the individual clutter object size is much
smaller than that of the target. This information can be used to develop a
filter philosophy applicable to clutter of small relative dimensions.

Let us constrain the arguments in the following to stationary targets
with the nature of the clutter as o stationarity here unspecified. The use
of the range gate concept will be assumed possible in the following material,
inasmuch as a given segment of range space can be singled out from the
universe of all range space for processing and observation.

Techniques such as clutter mapping and blanking will not be considered
since they merely act to avoid range cells in which clutterers are present.

The following investigation assumes that a range gate interval has been

defined, and further that there is no l/r2 amplitude dependence over this

gate. The individual objects making up the clutter and target are assumed to

not react or reverberate with one another and hence no time delay deviations
are to be considered since the source wave will be unimpeded. An infinite

bandwidth detector will be assumed unless otherwise specified.
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B. DESIGN OF OPTIMUM FILTERS FOR CLUTTER REJECTION

1. Infinite Signal-to-Noise Ratio Filter

The optimum linear filter which causes the output signal-to-noise ratio
to be infinite will be investigated in this section and it will be based upon
the priaciple ¢f orthogonality. A deterministic situation is assumed i.e.,
both the nature of the signal and the clutter waveforms can be specified.

Let S(t) and C(t) equal the signal and clutter over a specified interval
from zero to to. Then, on the basis of orthogonality, for the condition,
when no signal is present, we would like for the filter's output at t, to

be zero. Or

t
¢]
o

The orthogonal functions are C(t) and the postulated bracketed terms where
"a'' is a constant to be determined.

Expanding the function and solving for ''a'' gives

(o]
/ c(t) s(t) dt
=2 (37)
a to
sz(t) dt
(]

Let us relate this information to general filter performance. The bracketed

terms in expression 36 can be considered as the filter's impulse response or

hr{t) = [s(t) - a c(t)]* (38)
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The star represents the reversal in time of this function since the filter's

A

output is produced by a convolution process. Considering the convolution

process ‘''a'' goes to a where

SR s phehd 2

t ke

fS*('r) ¢ (t-t) dt
as= > (39) '

%
fC*(r) ¢ (t-1) dt
)

Consider next the output that would occur from this filter if in the

presence of the clutter there appeared a signal S(t). Then convolving the

signal plus clutter with the filter's impulse response of (38) gives

.«2&.;-.,-—‘ ‘:‘.‘:{:’E ,EEE X gg’}cﬁ ﬁ%‘s e Do S

t:0 tO ) tO ;
[s(r) + C(r)] h*(t-1) dv = [ S(1) S*(t-1) dr + (1-a) S(t) C*(t-1) d 2
.o/- T T T T [ T T T a [ T T T !ﬁ

ty (40)
-a [C(T) Cx(t-1) dr

Substituting the value for a from expression (39) gives the filter's output as

2

t
t, 75(1') Ck(t-t) dr

fs(T) sk (t-1) dr - L2 . (41)
[o]

tO
/C(T) Ct(t=1) dt
0

&

The results of expression (41) are interesting. The first integral is the

classical matched filter in white noise or the autccorrelation of the signal.

The second integral is the cross-correlation of the signal and clutter squared
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divided by the mean squared clutter value. The result shows that indeed an
output signal will occur when the desired signal appears providing one samples
at t =t . (Expression (41) will have a positive finite value.)

It has been shown that a filter can provide an infinite signal-to-clutter
ratio for a signal burried in clutter providing the clutter is known exactly
for all time, and that the occurrence of the signal and its form is also well
known. We have just demonstrated the best of all possible filters however,
its conditions are unrealistic. Generally the clutter's response for all
time is not known nor the time of occurrence of the signal. These factors
will be considered in the filters to follow.

2. Power Optimal Filter Criteria

Another criterion for optimality in filter design is that the ratio of
the output signal to output rms value o/ clutter is to be maximized.

Let
t

71 2
C,o=t ) ¢, () at (42)

Y0

represent the clutter rms value.

%

where Co(t) -I h(t) C(t-1) drt (43)

[}

Thus, the expression to be maximized is

2
Se (to)
t

(¢] '
-‘t-j co‘(t) dt
0

(4h)

)

over the class Lh of all linear filters.
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Here again the target's reflected waveform is represented by So(t) and

the clutter waveform is represented by Co(t). 2
3

An alternative expression for the clutter rms value is

5§
to to to 5
%J Coz(t) dt =ff h(t) h(y) R(t-p) drdu (45) %

0’0 oo
where 3
¢ !

o
R(t-y) = l—f c(t-1) Cc{t-p) dt (46) §
00 ?§

Define 1/) as the maximum signal-to-clutter ratio as defined in expres-

T

sion (45). Let g(1) be any non-trivial impulse response for which
t %

o
f g(t) S(to-'r) dt = 0. (47)

0 {

Then, normalizing the output of the optimal filter for S(to) as un input

ty
S(to) = | =f h(t) S(to-'r) dr, (48)
)

and further noting that

t
o

f [h(t) + € g(1)] S(to-T} dr = 1, (49)

0

We wish to have a maximum output signal-to-clutter ratio then

¢ 2(t) =25 2t ) > 0 (50)
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Applying expression (45) and expanding gives

t t.

t0 tO (o]
ezf I g(t) g(u) R(r-p) drdu + 2¢ f" g(t) h(u) R(x-u) dtdu > 0 (51)
o O

o o0

To be satisfied for all values of ¢ the expression requires the following to

be true.

tO tO
f f g(t) h(u) R(r-u) drdu = 0. (52)
o 0

However, by construction, we know that

t
0
J s ste e - (53)

o

Thus, the integral equation for the optimal filter becomes, in this case

t
0
] h(u) R(z-u) du = K S(t_-1) (54)

o
(K an arbitrary constant)

Now if R(t-p) = 6(t=-p), then

t
o]
f h(u) 8(r-p) = h(r) = K S(t_-1) (55)

o]

and the result is the well known "matched" filter. Now let it be assumed

that




t R(t-u) = R(t) 0<t=t, (56)
=0 otherwise

and similarly s(t-1) = s(t) 0<tzt (57)
=0 otherwise

Then, taking the Fourier Transform of the filter integral equation, expression

(54), the result is

Jut
H(ju) R(w) = K € ° s(-ju) (58)

or

-jwto

H(jw) = E%&}“-’L . (59)

This result is quite well known and has been derived by many. See, for

T L TR R

example, L. A. Zadeh and J. R. Ragazzini, Reference 8, where it is listed as
an infinite memory filter. J. B. Thomas, Reference 9, lists this as a 3
solution for a matched filter by prewhitening techniques.

This result will be used later in the determination of the optimal

¥ Ao s Yy S

signal-to-clutter ratios that can be achieved for the various conditions to
be investigated for the geometries of interest.

In this and the prior filter the assumption was made that the situation
of interest is completely deterministic; i.e., both signal and clutter wave-
forms are known. Perhaps in the case of atmospheric noise, when the noise
can be assumed a priori to be white noise, the clutter distribution and wave- 4 ‘
form can be assumed to be known. But in cases other than those where the 3 y|

clutter waveform is either known or can be determined, optimal filter theory
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has a rather limited meaning simply because not enough a priori information
is usually available to enable a design of the optimal linear filter configu~
ration.

Classical cptimal filter theory traditionally has been built in an
atmosphere of synthesis and circuit theory, which serves to constrain
solutions to relatively simple ones, however, digital solutions can be used
to extend the optimal filter to more complex waveforms and transfer functions.

3. The Lee Correlation Technique

The Lee correlation technique is a periodic sampling technique which

allows the removal of a non-periodic component from the presence of a periodic

component. (See Reference 10.) This technique applies only to the situation
where the signal or target is stationary, i.e., allows the waveforms sampled
at different times to retain the same waveshape, and in addition, the clutter i *
or noise waveform must be specified as unstationary with a zero average value. g
One of the requisites for this solution is that the target waveform be peri- |
odic. The latter situation can be forced by storing all backscatter returns
taken periodically and forming a pseudo-periodic function which can then be
processed as a continuous periodic function. This method is presented by w;y
of demonstration to show that if the clutter is moving the signal-to-noise

ratio can be identified by a simple relationship.

Consider the total incoming waveform as an additive mixture of

s(t) + c(t) (60)

where again S(t) represents the signal waveform and C(t) represents the {
clutter waveform. Let us apply the definition of autocorrelation and form

the expression

6k




t

0
oy o) =M J [S(t) + N(t)] [S(t+r) + N(t+r)] dt (61)

tgw 2t° o

=hgg (1) + 0 (1) + 05y (1) + ¢ (1) (62)

The first two terms of the expansion are the autocorrelations of the
signal and of the noise, respectively. The function ¢NN is non-periodic
and tends to zero as T goes to infinity since a property of autocorrelation is
thot the autocorrelation of a random wave without a hidden periodic component
tends to the square of the mean value as t+ . Because of incoherence between
signal and clutter waveforms, the third and fourth terms of expression (62)
also vanish. As a result of these factors, the general shape of the auto-
correlation function of expression (62) would appear as in Figure 27 for a
periodic waveform of sinusoidal form.

The fact that the noise or clutter component of the auto.orrelation
tapers off to small values essentially zero and that the signal component
persists on a periodic function suggests that perhaps only the periodic
output function will be outputted for large values of t.

Lee also presents a scheme utilizing cross-correlation of the periodic
signal waveforms with impulses having a period equal to the period of the
signal waverorm. In deriving the mathematical expressions for this operation,
particular emphasis will be placed here upon the use of the periodic unit
impulse function §(t). Let us look first at the fourier representation of a

periodic function f(t), as indicated in expression (63)
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Figure 27. Autocorreiation Function of Sine Wave Plus Randun Noise.
Dotted Curve is Component Due to Random Noise (Reference 10)
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o *t /2
Jjnw, t ~jnw,T
flt) = Z € ! I/tI f(1) ¢ ! dt (63)
ey [o] -t /2
n=-m [o)

An exchange of the order of the integration and summation operations allows

writing the expression in the form

+t°/2 oo i
an‘(t-t)
f(t) = f(t) dt E l/to € (64)
-t°/2 oy

The fourier series for the periodic unit impulse function can be written in

the form

R0

Jjnw,t
§(t) = Z e e ! (65)

nm=00

Thus, expression (64) can be written in the alternate form

3

+t°/2
f(t) = f(tr) 8(t-1) dr, (66)
-to/Z
which, except for a factor of I/to is a convolution integral which expresses
the periodic function as a convolution of a periodic unit-impulse function
of the same frequency with itself. Because 5(t) is a symmetric function,

the integral expression (66) is equivalent to the cross-correlation expressed

in (57).

+to/2

1/t f(t) = 1/t f(t) 6(t-t) dt (67)
-to/Z
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Since f(t) and 6(t) are both periodic and have the same period, (67) may

be written over an infinite interval rather than over one period

+t

. o]
o= o] R st e (68)
(o] (o] (o] "to

Now write the cross-correlation of the signal plus clutter waveform

S(t) + C(t) with the unit impulse periodic function

+t

o
¢y, (1) = t;imm 'i'l:f_t [s(t) + c(t)] 6(t-1) dt ()

+ +t

. lim 1 to lim 1 o
t,> ZtOJ s(t) 6(t-1) dt + ' f c(t) 6(t-1) dt

t +>o 2t
° [ Oto

t

The first term is by (67) 1/t s(t).

On the other hand, the second term in (69) may be interpreted as the
average of an infinite series of values of C(t) which are taken at intervals
of t,. The randomness of C(t) and its zero average value insure that the
second term of (69) is zero. Thus, the cross-correlation of the periodic
unit impulse waveform with a waveform whose components are a periodic plus
a random one results in the periodic pulse as output.

This operation can be carried out physically rather simply by periodically
sampling the composite waveform at a large number of points each separated by
a timet, equal to the period of the periodic component. (In the pseudo-
periodic case the sampling period would simply be the data sampling rate or

range cell repetition rate.) Then determine the output waveform by averaging

the data taken with a phase shift of 1. This method is illustrated in Figure 28.
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Figure 28, |llustration of Sampling a Periodic Signal Plus Noise
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Having determined the functional value for a delay of 1, the procedure
is repeated on subsequent sections of the pseudo-periodic function with an
adjustment in t to reflect other values of the return.

The signal-to-clutter ratio is easily determined if the original assump-
tions of the problem are met. Computing the variance of the values f(nt°+r),
it is evident that since the periodic component contributes equal values for
arguments of t = nt°+ T, its contribution to the variance is zero. Therefore,
the variance of the output is equal to that of the random or clutter contri-

huted component

2

0l =L o2
f n C

(70)

Alternatively, the rms value of the output noise is given by cc/(nllt),
where n s the number of sample points. ¢ Is the autocorrelation of the
A}

clutter for a zero argument.

Since in this method, the ideal cutput is the periodic component S, let

S2 be the square of the periodic component. Then the output signal-to clutte:
ratio is

s s

<532 (71)

c c

This result is interesting because it shows that for clutter moving
relative to thc target signal of interest the signal-to-clutter ratio is pro-
portional to the sample size n, Here again, but for the moving clutter con-
dition, we have demonstrate¢ that an almost infinite signal-to-noise ratio
may be theoretical'y achieved (for an infini.e number of samples). Thic
approach is more attrac:ive than the others, as it assumes no detailed
information of the clutter. As mentioned earlier, this one was presented for
information only, as the pféb'em at herd is the signal detection for a fixed

random!y spaced clutter environment.
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4. Signal-to-Ciutter Output Relationship for a White Noise Matched Filter

Under this section we will develop the signal-to-clutter ratio relation-
ship for a filter whose impulse response is the time image of the desired
signal to be detected. No consideration will be made in the filter for a
general clutter source; hence the filter is essentially the well known white
noise matched filter. The process is then, in effect, the autocorreiation for
the signal and cross-correlation for the clutter.

In order for the autocorrelation process to occur when a signal S(juw) is

present, the filter's frequency and time response must have the form of

Hjw) = S(-ju) e 9%
and (72)

h(t) = S(to-t)
where t_ is a delay that allows h(t) to be zero at t = 0,
When a signal appears at the input to the filter, the filter's output

response will be

~jwt

s, 0w = S} H(jw) = [s@)]?e” ° (73)

The transfer into the time domain of this function can be shown to be the com-

bination of the signal with its time displaced image or

t
So(t) =I S(to-'r) S(t-t) dt (78)

o

To prove that this is identical to an autocorrelation process let

X = £-1 (75)
and expression (74) becomes

t
So(t) =J- S(x) S[(to-t) + x] dx (76)

o
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The maximum value of an autocorrelation function occurs when the argument is

zero or, in the case of expression(76), t = to. It will have a value of

to
= = 2
5, (t to) f $°(x) dx (77)
o
which is the mean square of the power of S(t).

When the ciutter C(jw) arrives, the filter's output is then

-juwt
C,lw) = H(ju) €(jw) = S(-ju) C(ju) € ° (78)

The time response for this result is the same as for (76) except inter-
changing C(x) for S(x); hence it gives

tO
Co(t) =IC(X) S[(ty-t) + x] dx (79)

()
which is the cross-correlation between the signal and clutter.
For the general clutter case where the clutter may be random, we must

work with the clutter's power density spectrum ¢o(m)

0, (w) = o, ()]s (ju)|? (80)

The signal-to-clutter power ratio (see expression (44)) may then be expressed

using expression (77) and the implied transform of (80).

t 2

)
) I s(x?) dx
Sitax) L% d
Co(t)2 | ” 2

-Z-nf IS (jw) | ¢|(w) dw

-0

(81)

This ratio and the ratio formed by expresstons (77) and (79) will be usad in

the later computations.
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Notice if the input clutter is a series of impulses of amplitude C and

a density of K clutterers per second, ¢,(w) becomes a constant in expression (81),

therefore, leaving the form of expression (73). But this expression was shown

to be identical to (77). The resultant signal-to-clutter ratio is then

t

2 <]
S _“(Max)
-°===;-,-‘-— = -—I-Z-J Sz(x) dx (82)
Co(t) KC o

which is the solution for the matched white noise filter.

5. Signal-To-Clutter Output Relationship for the Optimal Filter Criteria

The optimal filter based upon maximizing the signal~to-c|utte§ power was
derived under Section B.2 of this chapter and shown to be (notice that IC(jw)I2

has replaced R{w)),

-jwt
(o) = Soied e (83)
[C(jw) |

See expression (59). We shall now develop the signal-tc-clutter output

expression in order to facilitate later calculations.

When the signal S(jw) appears, the output from theffilter will be

which Is the signal-to-clutter ratio of the power densities. Let us define

-jwto

2
So(jw) = S{ju) H(ju) = € (84)

the function

F(ju) = %‘dﬁ} (85)

Expression (84) can then be written as

..j t
s_(jo) = Fjo) Fl-ju) € ©° (86)

73
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b

which has a time domain solution of

t
s, (¢) f] £l Fl(tgmt) + x] dx (87)

o
similar to the form of (76). The maximum value of (87 occurs at the time

t=t or
[o]
t
° 2
s, (t=t ) =f 2 (x) dx (88)
[o]

Consider next the clutter performance through the filter. For a clutter

input C(jw), the filter's output is
C,Uu) = Cljw) H(juw) = g(:jﬁ) e JU = F(-ju) 0t (89)

However, when signal-to~clutter ratios are formed, the assumption is that the

average clutter power is sought. This i.ay be achieved by taking the magnitude

squared of expression (89). Then

e G| = [F(jw) |2 (90)
it can be shown that this function transformed into the time domain has a value

of

t S

" o
%; i IF(w) % eIt du =fo f(t) dt = Coz(t) (91)

Then the signal-to-clutter ratio is shown by expressions (88) and (91)

to 2
Soz(Max) _ Io fz(x) dx_

2 to
%o (t) J‘ £2 (t) dt
o

(92)

But the numerator and denominator integrals are the same; hence,
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t

52 (Max) r ,
——=]  f(t) dt (93)
Coz(t) o
The signal-to-clutter ratio for the optimal filter is then the mean of the
square of f(t) (which Is the ratio of the signal-to-clutter). This result will
be applied in the determination of the best filter for signal-to-clutter rejection
in randomly spaced fixed clutter.

Notice if the clutter density is allowed to take on the value of KCZ, the
output from the filter will be identical to the white noise filter of expres-
sion (82).

At this point the tools for performing the analyses to come have essen-
tially been developed. We shall now concentrate upon applying'them to the
scattering geometries of interest.

C. CORRELATION TECHNIQUES AS APPLIED TO CLUTTER REJECTION

Under this section we shall investigate the signal -co-clutter enhancement
that may be achieved using a white noise matched filter both for an idealized
impuise and rectangular excitation. The principal target and clutter scatterers
will be spheres of various sizes, and ihie model used in the analysis will be
the approximate one of Figure 12,

The investigation will begin by considering one targetand one clutterer In
order to determine the peak ratio of the signals. Later this will be followed
by investigating the effect on the signal-to-clutter ratio as a function of
many clutterers.

1. White Noise Matched Filter Performance for Detecting a Large Target
Sphere in the Presence of a Clutter Sphere

a. Case | - ldealized Impulsive Interrogator

Figure 29 indicates a configuration for an active filter which utilizes a

generatcr that forms a waveform like that of the scattered impulse response
78
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eo(t) of a given sphere (see Figure 12).

Recall that essentially a matched-filter may be considered as a transfer
function which performs an autocorrelation. This configuration is an optimal
matched filter when the noise or clutter is white or gaussian, but for the
moment let us look at its response characteristics as a detection tool. When
the input Si(t) and transfer impulse responses are identical, the output is a
maximun. On the other hand, when the input is clutter, which may be charac-
terized by one or more small spheres in this example, the waveform will be
unlike that of the target sphere and thus the correlator output will be less
than the maximum value of the matched case. An amplitude threshold detector
at the output completes the sphere discriminator and thus detects the presence
of the large target sphere by comparing the cross-correlator maximum output
with the known autocorrelation value.

The impulse response of a '"'matched filter'" correlator of this type should
be the time reverse of the desired signal, but for the case where the impulse
response of the scatterer is symmetrical, then the processes of correlation
and convolution are functionally equal and the recult will be the same. This
principle will be used in calculating the filter's output time response.

The filter for dele-.ting the target sphere depicted in Figure 29 contains
an integrator, a delay network, and a gain term. The gain T]/2 and delay 2.5T]
are adjusted for the response corresponding tc the sphere size one is seeking.

Let us look at the output of this filter for the two cases, matched and
unmatched spherical backscatter input.

Since the impulse response has beesn shown to be symmetrical, ‘then the
process can be represented by convuiution. Then convniving expression (15),

in the manner shown in expression (76), for the impulse response of a sphere

77
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of parameter T] with itself gives the white noise matched filter output

response of .
1,2 |

<S(t)mm:hed = -,"— [6(t) + 2 s(t-z.sT]) + G(t-STE)] ‘

-0.4[u(t) - u(t-STI)]

i (94)
‘¢35 [u(t) t - 2u(t-2.5T]) (t-Z.ST])

+u(t'5T]) (t-BT')]

Recall that Tl represents the ratio of the sphere's diameter to velocity of
free space propagation.
Figure 30 shows the output waveform of the matched correlator for this
matched input case (expression 94).
For comparison, Figure 31 shows the waveform which would be produced
with an idealized sphere backscatter input waveform, but here the sphere
scattering the radiation is smaller than tﬁat for which the filter is matched. !
This small sphere might represent a single clutter object, of size T2 for }
example. s

This result was obtained by convolving expression (15) for two different

o N

values of T,

In the unmatched case, the four impulses increase in size as the product
d, d
of the sphere sizes (T]T2 = ;;- ;3-). The solid negative portion of the wave-

form's duration is proportional to the diameter of the smaller sphere Tz;
however, the amplitude of the urndershoot remains constant for all T]>> Tz.
Size discrimination information is in the waveform and this infermation can
be achieved by measuring the interval between the impulses, which is 2.5T2 or }
2.5;£ , a function of the unknown sphere's diameter. As the size of the target

sphere goes to zero, the amplitude and duraticn of the filter output waveform

goss G zero.
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Figure 32 traces the growth of the parameters of Figure 31 as a function
of the sphere ratios as the filter's waveform evolves into the matched wave-
form of Figure 30. Plot (a) indicates that as T, approaches T, the spacing
(represented by the letter 'b" on Figure 31) approaches a value of 2.5T,.
Plot (b) shows the variation of impulse height values, and (c) indicates the
variation of the undershoot magnitude. Notice in Figure 32b that when the
sphere sizes are identical the amplitude abruptly doubles. This is the
amplitude of the matched case for the center pulse.

In the case where the target sphere is greater in size than that for
which the filter is matched, the output amplitude again increases in direct
proportion to that sphere's diameter, but the variables TI and T2 in Figure 31
are interchanged.

Let us now calculate the enhancement that is possible from input to out-
put in the signal-to-clutter ratio. Since only one clutter sphere is present
(more will be handled later), the ratio is essentially that of voltage rather
than power. 1t will also be shown in the section to follow that the amplitude
of the impulse, if it is given a finite width however small, is always larger
than the other portions of the scattered or filter-produced waveform. The
ratio will therefore be taken between the amplitudes of the impulses.

From Figure 12, the ratio of the filter inputs for a target sphere of

size T] to a clutter sphere is

S,(Max) T
ETm = T’; (Filter Input) (95)

However, the maximum output from the filter is shown in Figure 30 for the

signal and Figure 31 for the clutter to be
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-

So(Hax) T!%é |
C ) ~ T =25 (96)
o [ 2/@ 2

The enhancement that can be achieved by this filter from the input to
the output is the ratio of (96) and (95) or a factor of two in voltage or
four in power. Notice also that the ratio is independent of the sphere sizes,
making this filter undesirable as a clutter rejection filter where the excita-

tion is impulse-like. The ratio may be expressed in dB as
dB = 20 log,, 2 = 6 dB (97)

We shall next look at the same filter.where the excitation is pulse-like

rather than an impulse to see if there is any advantage gained.

b. Case Il - Finite Pulse Width Interrogator Waveform

Consider an interrogating pulse to the spherical scatterers of the form
shown in Figure 33. The scattered response from a spherical target can be
obtained by tline displacing a sphere's step response (Figure 17) and sub-
tracting the waveforms. Figure 34 shows the resultant waveform.

The output response for the filter's signal matched case may be obtained
by convolving or cross-correlating (same process since the functions are
symmetrical) the matched filter's output with the rectangular pulse's auto-
correlation function., Figure 33a shows the autocorrelation of the pulse and
expression (94) gives the matched filter's output. Figure 35 shows a sketch
of the response for a narrow pulse width 1. Figures 36 through 39 plot the
filter's output as the interrogating pulse width t is increased. Notice that
its output is of the autocorrelating form as expected. Figure 40 is a plot
of the maximum values of the output as t is increased and it shows a peaking
of the output for t = 1.75 TI‘ The crest amplitude time varies according to

the pulse width as is shown in Figure 35 and the series.
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Figure 33. Finite Pulse Width Interrogation Waveforms
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Figure 36. Matched Filter Output, Pulse Width Input T = O.ST]
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Figure 37. Matched Filter Output, Pulse Width Input t = !.257l
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We are now in a position to calculate the possible clutter rejection
effect of using a pulse interrogater. The input signal-to-clutter amplitude,
as can be seen by Figure 34, can be obtained by applying the proper designa-

tion for T. Then

Si(Max) T]
m = T; (Filter Input) (98)

because the crest amplitudes in the figure are not affectad by t up to 2.5T.
The result obtained is the same as for the impulse excitation case.

The maximum filter output was shown in Figure 40 to be
S (Max) = 0.589 T3 e > at 1 = 1.757 (99)
0 * 1 Yo A | ’

Now, in the case of a small sphere as clutter, one can show that if T2 Is less
than 1, which will be the case for small clutter, the filter's output will be
the convolution of a ramp and the expression used to construct Figure 31.

The ramp is the early time portion of Figure 33b ‘ince all of the action will

take place (for a small sphere scatterer) prior to reaching the time 1. Tha

maximum value of the filter's output for this case is

2 2
Co(Max) = 0.306T2 T' LR at t= I.ZST2 (100)

The ratio of the two is then

2
W' 1.88 '—2-) for T|>>T (101)

|
T 2
which is an encouraging value over that of the impulse interrogator [see

So(ﬁax) (T

expression (102)], because the filter's output increases with the sphere's

ratio squared.
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is obtained by the ratio of expressions (102) and (98) as

So(Max)/Co(Max) T]
5, Ram) /¢, (Haxy = ' +%8 T, fr TN

K
2

e Dt
Ze aad ,‘«S,,\.z_,«u x:s é@_a 5.,3;\\.‘:;',

(102)

The relationship shows that the enhancement increases linearly as the ratio

of sphere and clutter diameters for voltage and as the square for power.

The question may be asked regarding the cause of this enhancement. The
answer will lead to a filter class investigation to be performed later. The
cause is due principally to the attenuation of the clutter signal as can be
seen by comparing expressions (99) and (100). The reason is that since the
clutter is smaller than the target and the pulse duration 1, its response is
essentially over during the excitation interval t, as caused by the pulse's
autocorrelation function of Figure 33b., This being the case, the driving
function to be applied to the fiiter's impulse clutter response (Figure 31),

in order to obtain the filter's clutter pulse output, is a ramp function.

A SR A AR AR

This is the key, since a ramp is generated by an impulse exciting a double

integrator. Therefore, in effect, the clutter's high frequency content is

AN

attenuated by the I/w2 character which is indicative of a low-pass filter.

Later in this study we shall investigate the low-pass filter as a clutter

rejection filter.

The result that has been obtained is quite interesting, since no con-
sideration was made to match the filter to the clutter's performance, as in
the case of the optimal filter. Speaking of the optimal filter, it will be
shown that its output signal-to-noise ratio is independent of the type of

interrogater waveshape used, because a ratio is taken between the signal and
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clutter in forming the matched filter, therefore dropping out the driving

} function.

Another interesting aspect of this filter is that when the ciutter size

is small compared to the signal size for which the filter is matched, it will
produce an output, for a rectangular pulse, that approaches the impulse
response of the filter. Actually three impulse responses will occur, each
displaced by the pulse's duration, where the one at 2.5T‘ will be twice that
of the others and of opposite polarity. The amplitudes of these pulses could
further be reduced if the exciting pulse did not have such a sharp rise time.
Reducing the rise time amounts to adding more low pass filtering.

The dB enhancement for this filter may be described as

T
dB = 10 log[|.88 -.i.-l-] T,>T, (103)
2

for the single target and clutter case. We shall consider the multi-clutter
case next, ’

2. Multiple Clutter Input to the White Noise Matched Filter

Under this section we shall investigate the signal-to-clutter ratic out
of the white noise matched fiiter for twin conditions which are the period=.
ically and randomly spaced clutter. The reason for investigating the periodic
clutter is to determine the spacing conditions for a line of given size clutter
in order to obtain the maximum possible clutter level and to determine the
‘level. This latter determination will provide a lower bound for the signal-

to-clutter ratio from a white noise matched filter,

a. Waveform - Spacing Dependence of Targets and Clutter

Often clutter is composed of many small target objects which are each

interrogated individually. Becausz of their placement, however, the wave
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which is returned to the radar site for detection may be composed of & com-
posite of these individual waveforms. There are a number of constraints on
the pnysical orientation and placement, number and range cell size which
should be explored to ascertain the limitations of a detection and discrim-
ination system,

First, define a geometry which is spherical and has the idealized wave-
shape indicated in Figure 41. This combination will be used 1o implement the
investigation.

Recall that the duration of the pulse is directly related to the diameter
of the sphere.

Let us consider first the placement situation indicated in Figure 42
Here the target objects are perpendicular to the direction of travel of the
wavefront,

The distance D between the radar antenna and the front surface of the
target objects is assumed to be much larger than the largest distance & defined
by the target area as seen at thz receiving antenna. This constraint implies
that « > o and that the time differential in wave travel caused by the length-
ened path P is much smaller than the time 2.5T. The range cell is defined as
encompassing only the volumes about the target spheres.

Because of the small value of «, the points a and b will receive the
transmitted energy at the same time as seen in the 2.5T regime. Similarly,
the backscatter wave components from points a and b will both be returned at
the same time. Because there is no time shift in receive times, both spheres
will also be subject to traveling waves which act at the same time. Thus,
each sphere will scatter exactly the same waveform to be received at the

receiving antenna. Of course, wave components in the same direction in space

95

ST I N




A

* T T
7 \? .
! — 2.57 o
v
]
205

Figure 41, Geometry and Waveform of Interest in the Examples of This Section

96

- -




FRONT SURFACE OF E

TLLUMINATING & TARGET ELEMENTS

e DETECTION ANTENNA 1\ ecponT P_\ | 3
A\ . b
| \— DIRECTION OF
WAVE TRAVEL z
'* ° ’l RANGE

CELL

BDM-W-72-084

Figure 42. Two Target Objects Interrogated and Scattering Broadside to the
Radar Antenna

DAL

97 2

[N




add, as do all vector fields. Thereforc, the waveform as seen at the receiv-
ing antenna will be a composite of all individual backscatter waveforms, as
indicated in Figure 43.

Generalizing the situation, the waveform resulting fron n targets in the
range cell will exhibit an impulse height of gl-and an undershoot amplitude of
%73. When the value of =« becomes larger with respect to the conditions set
forth earlier in the discussion, the impulses, rather than adding, will be
time shifted from one another in a fashion indicated in Figure 44,

In the case of targets or planes of targets which are offset from one
another in depth from the radar antenna, again the backscatter from each
individual object may be thought to occur independent of the others, but the
resultant received waveform is a composite of all of the individual waveforms.
The difference in depth will be reflected in a time shift in individual
scattered waveforms resulting from a difference in the wave travel time which
is equal to twice the value %3 where v is the wave velocity &nd 2 is the off-
set distance.

This situation is depicted in Figure 45a, where the range cell is defined
here to encompass the volume surrounding the two spheres of interest. The
resultant waveform is indicated in Figure 45b.

it is of some interest to investigate the offset depth which will produce

a time delay in the second waveform which is equal to the duration of the first.

This offset distance will be such that leading and trailing impulses of suc-
cessive waveforms will add, thus causing the magnitude of the composite wave-
form to be twice the magnitude of a single target positive impulse magnitude

for the two body situation.
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Figure 46 illustrates the composite waveform resulting from this target
situation. The distance for which impulse addition due to offset occurs is
computed as 1.25d between centers. Setting the impulse offset value %&-equal
to the duration of an individua! waveform, 2.5T = 2.5%3 the critical value of
% is indeed equal to 1.25d.

Having considered the effect of multiple targets in the same range cell
having multiplicities in both depth and field in the antenna pattern, it is
possible to predict a composite backscattered waveform, given the individual
backscatter waveforms and the distance and pattern of the target objects.

As an example, consider the configuration indicated in Figure 47. The
two-by-two configuration of four equal sized spheres is arranged in four
layers, each a different distance from the transmit/receive antenna, and
labeled with the letters ¢, d, e, and f, with a second layer lying upon it.
Utilizing the rules developed in the preceding discussion, the waveform can
be_seen to evolve as a compos!ie, indicated in Figure 47¢c, which has the
components indicated in Figure 47b.

The worst case condition for multiple scatterers, from the prior results
of two bodies, occurs when the scatterers are periodically separated by the
distance I.25d2; for this condition the steady state composite will be a
series of positive impulses of amplitude T, (twice that of a single clutterer)
with a constant negative amplitude of ?%5. This result will be applied later
to the calculation of periodic signal-to-clutter ratio determinations.

One of the results of this discussion has been that it is possible to

predict the composite backscatter waveform from a multiplicity of objects

providing their spacing is known.
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Figure 46. Critical Target Spacing and Waveform for Positive Impulse Addition
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Figure 47. Example of a Multiple Target Geometry and its Composite Waveform
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A further result is a study of the limit upon the effect of range gating
which the waveform duration and spacing have upon one another. Specifically,
range gating (in depth), to be completely effective in separating waveforms,
cannot be any more selective than the limit determined by equating the back-
scatter pulse duration to twice the wave travel time differential between
the two object layers. '

For example, when spheres are located 3ne behind another within a given
solid angle cell, gating by blanking would béﬁ@deffectlve for separating
waveforms for sphere spacings in the region 1.0 < & < 1.25d between centers,
simply because waveforms overlap in a manner similar to that indicated in
Figure 44b.

More detailed considerations of the constraints upon minimum target
spacing and range cell and gate size with respect to the expected target
waveform will be made in a later section after the requirements and techniques
of target waveform discrimination have been treated in detail.

3. Maximum Matched Filter Qutput Resulting From Multiple Clutter Spheres

Continuing the discussion regarding waveforms associated with multiple
target and clutter objects, this section specifically treats the white noise
matched filter of Section C. That is, a filter matched to a waveform from a
large sphere which has as its input the composite waveform from many smaller
spheres.

The spacing between positive impulses from the output of a target-matched
filter excited by a single clutterer was shown to be as indicated in Figure 48
(see Figure 31).

From the figure, it can be seen that when the clutter spheres are within

the same solid angle cell one behind another, the impulses of the backscatter
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Figure 48, Impulse Spacing for Non-Matched Case-Matched Filter
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waveform can be made to add if the spacing is made such that the waveform

from the second sphere is delayed for a time equal to 2.5T2. The offset
distance between centers can be computed for this case by letting %£-= 2.5T2.
Then the offset distance £ is calculated as 1.25 d2’ as was indicated in the

T
previous section. For the condition = = T2 (or the ciutter diameter is half

2
that of the target) the maximum positive value will add to a maximum value of
four times that of one positive impulse, as indicated in Figure 49, as an out-
put from the filter. (This case causes the impulses of Figure 48 to be
equally spaced.) Notice that the negative portion of Figure 49 becomes a

constant negative level. This occurs by adding the underswing of Figure 31

for each.clutterer.

Note that the positive maximum amplitude occurs at the end of the filter's

output for a single sphere, which represents a time delay of t' = Z.S(T] + Tz)
and has an amplitude equal to four times that produced by a single clutterer.
In the case where T2 = ;l , it is shown that for a spacing ¢ = 2.5T2
the same time delay is required before the positive maximum is reached. This
case is documented in Figure 50. The contribution of an infinite number of
spheres, each spaced & = 1,25 d2 between centers from the next, with T2- ;l
will also be equal to four times the positive impulse magnitude of a single
sphere of the same size. A minimum of six spheres in line are required to
provide this output, which again occurs at a time equal to the pulse width of
a single sphere.
In the case where the spacing is not equal to the periodic & = l.25d2,
the maximum amplitude of the output waveform will be less.

in general then, the minimum number N of T2 sized spheres in line, spaced

L = l.25d2 between centers, required to provide a maximum cross-correlation
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Figure 49. Matched Filter Output for & = 1,25 d, Sphere Spacing, T, = Tl/&
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filter output of T|T2 amplitude is given by

T

"'“T’l‘ (104)
2

and this maximum will first occur ét the time
t' = 2.5[T, +T,] (105) \

After this time there will occur constant amplitude periodic impulses of
T‘T2 spaced Z.ST2 in time, plus a constant level negative amplitude of T‘/Z.S.
The significance of the preceding discussion is that the output from a

matched filter, with a periodic sphere clutter input, will be limited to‘a

positive maximum of no more than four times that of a single clutter body,
and that the negative maximum for this same configuration can be less than .
twice that of a single clutter hody when the clutter bodies are smaller than
the sphere “2 which the filter is matched.

We are now in a position to determine the enhancement that the white
noise filter will provide for impulse-like periodically spaced or excited
clutter., The peak input clutter amplitude condition was shown for clutter
periodically spaced at intervals of 2.5T2 to be Tz. For a target sphere.

T
amplitude in this clutter of il" the peak filter input signal-to-clutter ratio

is then
S (hax) T
i - l_!. (105)
Csluaxf 2 T2 .

Notice that this periodic condition has only reduced the peak amplitude
signal-to-clutter ratio by a factor of two over that of the non-periodic case.
(See Expression 95.)

Let us now represent the clutter in the classic form as an average power

value over a given interval. (See expression [44].) Since the clutter is b
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periodic, the average value irrespective over the interval taken (provided it
incompasses complete cycles) is the same as that of a single cycle. The

average value for the clutter is then

2.5T2
-2 ] 2
Ci = -2—.-5'-[-2-] GS (t) dt (107)

o

where Gs(t) is the impulse response of one clutter sphere as given by (15).
in order to perform this calcuiation and avoid complications, let us assume
that the interrogating pulse to the clutter is finite having a very narrow

width t and an amplitude e. Then

7 2 |'2 .

G [2“5‘*3"2‘5‘] (108)

where the first term in the bracket is the impulse contribution and the

second the undershoot. If we allow t to approach zero or T2 >> 1, then only

the impulse contribution remains. ‘
The classic signal-to-clutter ratio in power is then (apply 108 with the

sqhare of the signal's crest amplitude for a narrow pulse interrogation).

2 2

S.“(Max) T
2 2t
c

i

If one is willing to accept the definition of the signal-to-clutter ratio as

specified above, then the value would approach infinity as 1 goes to zero.
Consider next the filter's output signal-to-clutter ratio for the periodic

clutter model where the clutterers are spaced 2.5T2 apart. It was shown that

the filter's output, for clutter, will have the same shape as the input except

that the impulse amplitudes will be T‘Tz. Since we are now working with a

1




pulse of finite width but very small, this modifies the clutter response from
that shown in Figure 49 to that of Figure 51. This response can be obtained
by convolving the pulse shown in Figure 33b with the impulse train of Figure
49, Performing the integration over a cycle of the figure as directed by

expression (107) gives the filter's average clutter power of

— T
2 b2 3 2 T
€ = ¢ T‘ T [—-—-3.75 + 3-—.25] (110)

The maximum signal-to~clutter ratio then follows from the crest signal

amplitude of Figure 9 squared and Co2 or

Soz(Max) le
—.E-_-i:"-—' 0.235? (m)
o

The filter enhancement then follows from the ratio of the filter's output

to input signal-to-clutter ratio (expression [108] and [110]) or

Soz(Max)/Co2

———=== 0.375 (112)
S‘Z(MaxyETz

The result shows that the signal-to-clutter ratio is actually reduced by using
the matched white noise filter, where the clutter is periodically spaced in a
single line, and where the interrogation is impulse-like. The reduction is
essentially a factor of two and one half or -8 dB. -

If this same ratio is performed only on the basis of amplitude rather

then average power, the filter's output signal-to-clutter ratio from Figures 35

and §1 is
S _(Max) T
o « Ll 1 (113)
c'otnax)' FTZ
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Figure 51. Steady State Matched Filter Clutter Output
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and the input signal-to-clutter ratio is given by (107) or the ratios are,

So(Max)/Co(Max)

5, Max) /¢, () ~ ©+3 (114)

This represents a six-dB degradation.
We have just shown that the white noise matched filter does not provide
clutter rejection for a periodic return from clutter for impulse integration.
We shall next consider, as in this case, periodically spaced clutter,
however the excitation will be pulse-like rather than an impulse. It is of
interest to determine if by varying the pulse's width whether the clutter may
be reduced or made to disappear.

a. Clutter Rejection for Periodically Spaced Spherical Clutter
That Is Pulse Excited

Earlier it was shown that impulse excited spherical clutter periodically
spaced 1.25d/c apart produced a periodic clutter response consisting of
impulses and » constant negative level. This behavior applied as an input
to the white noise matched filter produced a similar steady state output as
shown in Figure 49. The last section, Section 2, showed that the presence of
the white noise matched filter only served to reduce the signal-to-clutter
ratio between the input and output. Here we will now consider the same
conditions except that the matched filter is removed and replaced by a filter
that causes out of phase total cancellation. Thie can also be accomplished
with a rectangular pulse interrogation.

Consider a filter that has a 1/w frequency response (an integrator) and
pass the periodic signal through it. The output will then be periodic and have
a time waveshape as shown in Figures 17 or 19 depending upon the approximation
selected. Now if the integrator is followed by a delay network, a polarity

reversing amplifier, and a summer as shown in Figure 52, the clutier may be
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Figure 52, Filter For Periodically Spaced Llutter Rejection
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made to go to zero. This is accomplished by adding the clutter out of phase
with itself, the delay being multiplec of © = n(l.25d2/c). This arrangement
would then provide an infinite target to clutter ratio as there will be no
clutter. Of course the next question is what happens to the signal through
this filter., |If the target is much larger than the clutter and the delay is
for n = 1, the output will be the target's scattered response not its integral.
This occurs because the output will be deriQative-like, however, the input was
integrated, hence, cancelling it and returning the input function.

This discussion applies equally well to the condition where the inter-
rogating pulse is rectangular and has a duraiion equal to T = n (1.25d/2),
The same result will occur as produced for the impulse interrogator and the
filter of Figure 52. When n =1 in the delay time, then for a large target
relative to the clutter, the pulse will appear as an impulse; hence it will
scatter the .argets' response not its integral.

It has been demonstrated that for periodic clutter that either a filter
of the form of Figure 52 where the interrogating pulse is an impulse or the
interrogating pulse is rectangular and of a proper duration, then an infinite
signal-to-clutter ratio can be achieved.

There remains one more test for the white nofse matched filiter and that
is for the condition where the ciutter spheres are randomly spaced. This
will be the subject of the next se;tion.

b. Clutter Rejection for Randomly Spaced Clutter

Lee has shown (Reference 10) that a train of randomly spaced pulses
each having the same time waveshape f(t) and being Poisson distributed, will

have an average power of
t > o

e ™ kj £2(¢) dt (115)

o
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where k = n/to the average number of pulses expected over the interval to.
The above expression applies both for the same sign and alternately positive
and negative pulse cases that we will consider. The reason is that for the
positive pulse case generally one must consider the dc component in the cal-
culation. Since the scattering does not contain a dc component it need not
be considered.

We may now return to the previous investigations of the matched filter
and concider the random aspect. For the impulse excitation case of C.l.a it
was shown that no enhancement in clutter rejection will occur between the
input and outyut using the matched filter for a single input. One can argue
rather easily that the randomness of the sigral will not alter the condition.
Let us continue next to the finite pulse condition of C.1.b.

Figures 33 and 34 show the expected responses for a pulse-type excitation

of a target sphere. The crest input signal value squared is then
2

. 1
s, 2(hax) = (2-1) (16)

The clutter response for the case where the individual clutter size is
smaller than the target can be shown to consist of two phases of the form of
Figure 17 but displaced in time by t the exciting pulse width, These shapes
occur because the pulse essentially integrates the clutter's scattering
response. (The second pulse will be t